HEG ARC Filière IG

Statistiques: Série 6

Exercice 1.

a) Déterminer l'équation de la droite des moindres carrés ajustant les points (-4; 16), (-2; 10), (1; 1), (4; -8). Calculer ensuite le coefficient de corrélation de cet ajustement. Conclusions?

b) Mêmes questions pour les points (-2;4), (-1;1), (1;1), (2;4).

Exercice 2. Le tableau ci-dessous relève les mesures du taux d'ozone (en $\mu g/m^3$) et de la température ambiante (en °C) durant cinq jours du mois de juillet 2003 au même moment de la journée.

Température en °C	20	28	32	34	36
Ozone en $\mu g/m^3$	80	142	176	191	210

On pressent l'existence d'une relation linéaire affine entre le taux d'ozone et la température.

- a) Déterminer l'équation sur laquelle débouche la méthode des moindres carrés appliquée aux données ci-dessus.
- b) Calculer le coefficient de corrélation attaché à cet ajustement et commenter le résultat obtenu.
- c) Avec ce modèle, à quel taux d'ozone doit-on s'attendre pour une température de 15°C?
- d) Lorsque le taux d'ozone dépasse 240 μ g/m³, les autorités sanitaires prennent des mesures immédiates. À partir de quelle température ce risque existe-t-il?

Exercice 3. En mesurant la tension artérielle moyenne (en mm de Hg) de 8 femmes, dont on connaît les âges, on obtient les résultats suivants.

\hat{A} ge X	Pression Y		
(en années)	(en mm Hg)		
56	147		
42	125		
72	160		
36	118		
63	149		
47	128		
55	150		
49	145		

- a) Calculer les variances Var(X), Var(Y) et la covariance Cov(X,Y).
- b) Donner l'équation de la droite de régression.
- c) Calculer et porter un jugement sur le coefficient de corrélation linéaire entre X et Y.
- d) Estimer la tension artérielle d'une femme âgée de 43 ans.